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Abstract
A number of scattering situations can naively be expected to show essentially classical features,
because of a (generalized) Debye–Waller factor causing decoherence and destroying
interference and diffraction phenomena. It is shown, however, that such decoherence may be
quenched in several ways: A—the momentum transfer to a large system may be separated into
subtransfers to individual atoms, each subtransfer being too small to cause a strong
Debye–Waller effect; B—(more significantly) the high-frequency vibrations may be ineffective
in causing strong decoherence, because the corresponding correlation functions remain
non-vanishing for too short a time. When this Debye–Waller factor quenching takes place,
coherence is restored and typical quantum wave-like phenomena reappear.

1. Introduction

In recent years it has become increasingly clear that a number
of physical phenomena, which usually appear to behave
in a completely classical fashion, do so only because of
decoherence [1, 2], and are ready to show quantum features
as soon as the causes of decoherence are in abeyance [3]. The
appearance of classical behaviour because of decoherence has
been studied in great detail and has led to very interesting
physics [1, 2]. Here I am interested in the opposite
problem: the appearance of quantum behaviour because of the
ineffectiveness of decoherence. This has also been studied,
although much less often, focusing on two special cases:
either the so-called ‘taming of decoherence’ in the context
of quantum computation [4] or the quantum behaviour of
relatively large objects which might naively be supposed to
behave classically. I will concentrate on the latter case.

Following Zurek, someone might comment that much of
what follows is not really decoherence but ‘a simulation of
decoherence by classical noise’ [1]. In fact, I do not wish to
stress entanglement, but diffraction (both are characteristically
quantum phenomena; the latter, however, is simpler). The
point is that wave phenomena (interference and diffraction)
are exponentially damped by phonons, which play the role
of a decoherence factor; and the return of wave phenomena
when phonons, for whatever reason, are in abeyance is
equally exponential and therefore very drastic. This return

to coherence should not necessarily be seen as a return
from classical to quantum behaviour (after all, one may
consider scattering of electromagnetic radiation, in which
case the coherent, wave-like behaviour is classical while
the corpuscular behaviour of photons belongs to quantum
physics), but in the present study I will concentrate on particle
scattering: hence the return to coherence and the reappearance
of interference and diffraction phenomena really amounts to a
reappearance of characteristic quantum properties.

In any case, independently of whether matter or radiation
is under study, decoherence in a scattering process from a solid
appears primarily in terms of a Debye–Waller factor, which in
the simplest case appears as

e−2W = |〈eiq·r〉|2 (1)

with

W = 1
2 〈(q · r)2〉, (2)

where h̄q is the momentum transfer and where r is a position
observable which is subject to random or stochastic behaviour
via its coupling to the phonon variables1 (but the most
interesting cases differ, in an important way, from this simplest
one).

1 This is similar to the uncontrollable measurements discussed by Joos on
page 44 of the book by Giulini et al [2].

0953-8984/09/405004+06$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/40/405004
mailto:levi@fisica.unige.it
http://stacks.iop.org/JPhysCM/21/405004


J. Phys.: Condens. Matter 21 (2009) 405004 A C Levi

2. Debye–Waller factor and decoherence

In order to take a more general point of view [5, 3], let me write
the differential probability for scattering of a particle from a
large system into the solid angle d� with energy exchange d�:

dP = A

2π
d� d�

∫
e− iτ�

h̄ 〈T †
k←ki

(0)Tk←ki (τ )〉 dτ, (3)

where Tk←ki is the T matrix for the particle to be scattered from
wavevector ki to k (|k| = |ki |); T is still an operator over the
states of the large system, the average being taken in the initial
state; and A is a prefactor depending on the specific scattering
situation. For example, in the case of surface scattering

A = − L4m2k

4π2h̄4ki · n
(4)

(L is an appropriate quantization length, m is the particle mass,
n is the perpendicular unit vector out of the surface; A is
positive because ki · n is negative). The time evolution of
the T matrix in (3) is strictly related to energy exchange and
has nothing to do with a different time evolution, related to the
mechanism of the collision process, to be considered below. To
avoid confusion, I have indicated the time variable occurring
in (3) by τ .

For elastic scattering into the solid angle d� the
differential probability is then

dPelastic = A|〈Tk←ki 〉|2 d�. (5)

The average occurring in (5) is the same as that occurring
in (1) but gives rise to a much more general Debye–Waller
factor (DWF). Notice that the absolute value squared, in these
formulae, must be taken after the average (i.e. the T -matrix
element itself is to be averaged, not its absolute value squared).

The T -matrix element contains as its essential part a
phase shift factor eiη (in the most general case this is to be
integrated over paths in a Feynman path integral [7]; in various
approximations the exact and highly complex path integral
is replaced by an ordinary integral, the diffraction integral,
over the appropriate set V of variables). Understandably,
the average 〈T 〉 leads thus to an average 〈eiη〉, similar to (1)
(this time, however, A: the latter is still to be integrated
over the set of V variables, and this integration is highly
relevant). Even more important (and central to my subsequent
discussion) is the fact that B: the phase η itself, in general,
is not a localized, or instantaneous, quantity. In what
we may term the Laue approximation η would be treated
as instantaneous and immediately related to the momentum
transfer h̄q (a typical η is of the form q · r, as in (1), where
r is some appropriate position in the scatterer). But this Laue
approximation is static and implies that such a quantity r is
coupled to the phonon field only via the statistics of position—
a very reasonable assumption for x-rays, whose collisions take
place in an exceedingly short time with respect to the phonon
frequencies, but a wrong assumption in general. This has
strong implications for the return to coherence.

Let me recall how the simple Debye–Waller effect (1)
amounts to a decoherence. The DWF multiplies and

weakens the elastic scattering probability, which includes
diffraction/interference effects, hence destroys the typical
quantum nature of the scattering process. Actually,
a DWF (with the appropriate changes) multiplies and
weakens not only elastic scattering but also the inelastic
scattering probabilities with a well-defined number of phonons
exchanged [6], favouring instead the probability of random
inelastic scattering. As had been shown many years ago,
the resulting scattering probabilities, for a very strong DWF,
tend to the classical probabilities [6]: in such a way, more or
less complete decoherence is achieved. It is also important
to note that (generally speaking) on increasing the mass of
the colliding particle the DW effect becomes progressively
more severe, and that this happens exponentially. The
progressive transition from quantum to classical behaviour,
due to phonon exchange, when passing from microscopic to
more macroscopic objects, can thereby be explicitly followed,
without any need to invoke or explore the mysticism of
wavefunction collapse.

3. Return to coherence

The return to coherence, in the present case, is due to some
ineffectiveness of the phonon spectrum (or at least of a part
of it) in generating a DWF, and thus in causing decoherence.
This in turn can be traced to some reason of type A or, more
fundamentally, of type B (I will concentrate on the latter,
but first let me briefly discuss the former). In all cases, as
shown, for example, by Feynman and Hibbs, the quantum-
mechanical phase η equals some action S divided by h̄ [7].
A few properties of the action S will be discussed in section 4.

Leaving aside for a moment the non-instantaneous
behaviour of η, i.e. of S, we may write, in the case of a particle
interacting with a large system made up of individual atoms
(see equation (16): below),

S = h̄
∑

n

qn · rn, (6)

where rn is the position of the nth atom and h̄qn is the
momentum transfer to it (of course

∑
n qn = q). Then

short-wavelength phonons (which are such that the motions
of different atoms, hence the momentum transfers to them,
are largely uncorrelated) are ineffective in contributing to the
average eiS/h̄ (provided, of course, several atoms contribute
to the interaction, i.e. several qns are non-negligible). This
is an important effect of type A first studied, in particular,
by Armand et al [8] (although the set of V variables in
this case is the set of atoms, i.e. is discrete, and the
integration is replaced by a sum). Such short-wavelength
phonons have high frequencies, but it would be wrong to
assume that high-frequency phonons are ineffective in causing
decoherence because of effects of type A (optical phonons
can have, of course, high frequency, but long wavelength).
High-frequency phonons can really be ineffective in causing
decoherence, but because of effects of type B, which I am now
going to discuss, starting with a somewhat detailed, although
elementary, consideration of the classical action S.
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4. The action

The standard form for the action is in terms of the Lagrangian
L:

S =
∫ t2

t1

L dt (7)

but since L = T − V it is equally standard to write for an
energy-conserving system:

S =
∫ t2

t1

(T −V ) dt =
∫ t2

t1

(2T −E) dt = 2
∫ t2

t1

T dt−Et (8)

where t = t2 − t1.
For a material point T = 1

2 m( dr
dt )

2, so that

S = m
∫ t2

t1

(
dr
dt

)2

dt − Et = m
∫ r2

r1

v · dr − Et . (9)

The integral occurring in (9) can be evaluated by parts:
∫ r2

r1

v · dr = v2 · r2 − v1 · r1 − 1

m

∫ t2

t1

F · r dt (10)

where, if a is the acceleration, F = ma is the force.
For an elastic scattering problem r1, r2, v1, v2 may be

evaluated asymptotically, so that r2 = v2t2 and r1 = v1t1,
hence v2 · r2 − v1 · r1 = v2

2 t2 − v2
1 t1 = v2t = 2E

m t ; thus

∫ r2

r1

v · dr = − 1

m

∫ t2

t1

F · r dt + 2Et

m
(11)

and substituting into (9)

S = −
∫ t2

t1

F · r dt + Et . (12)

The second term is irrelevant for the phase shift and the action
may effectively be written

S = −
∫ t2

t1

F · r dt . (13)

In the instantaneous (or localized) case, i.e. in the Laue
approximation, either everything takes place at a single
location r, which may then be extracted from the integral,
obtaining

S = −r ·
∫

F dt; (14)

the integral is (minus) the momentum transfer �p, so that
S = �p · r, and quantum-mechanically

S = h̄q · r; (15)

or, more generally, if the momentum transfer is divided among
a number of scatterers, q = ∑

n qn , and if scattering from the
nth scatterer takes place when the material point is at rn , then

S = h̄
∑

n

qn · rn, (16)

which coincides with equation (6). But otherwise the full
equation (13) must be used.

If, instead of one material point a set of points is
considered, (13) generalizes trivially to

S = −
∑

i

∫ t2

t1

Fi · ri dt, (17)

but the force Fi , acting on material point i , is due to the other
points j :

Fi =
∑

j

F j i; (18)

thus S can be written

S = −
∑

i j

∫ t2

t1

F j i · ri dt . (19)

Let me interchange i with j :

S = −
∑

i j

∫ t2

t1

Fi j · r j dt =
∑

i j

∫ t2

t1

F j i · r j dt (20)

because Fi j = −F j i . Summing (19) and (20) S is obtained in
the form

S = − 1
2

∑
i j

∫ t2

t1

F j i · (ri − r j ) dt . (21)

In this form S is the relative (or mutual) action and has a
strong advantage over other action forms: it is space-invariant,
since it depends only on relative coordinates, specifically on
the distance ri − r j .

Independently of this, just comparing (20) with (19) it is
clear that in the action it is allowed to replace ri with r j (and
to change sign). In particular, let me call i a particle colliding
with a solid and Fi the force acting on it at time t . Then, if (as
will be supposed, for example, at the beginning of section 5),
the particle interacts with one atom only of the solid, whose
position is r j at time t , (20) gives, for the part of the action
involving the particle:

Si =
∫ t2

t1

Fi · r j dt . (22)

Although (22) is exact, its generalization to the case where
the particle interacts with several atoms j :

Si =
∑

j

∫ t2

t1

Fi · r j dt (23)

appears to be only an approximation. Further, r j will oscillate
with the vibrational coordinates of the solid; and considering
again the first approximation, i.e. neglecting the effect of
vibrations on the forces, the fluctuating part of the action will
be

δSi =
∑

j

∫ t2

t1

Fi · δr j dt, (24)

corresponding to a fluctuating part of the effective Lagrangian:

δL =
∑

j

Fi · δr j . (25)

The fluctuation δL (not necessarily in this explicit form) will
be used in section 5 to obtain the main equations of the present
paper.

3
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5. Debye–Waller factor and time correlations

To discuss the (rather fundamental) effects of type B one may
avoid the complications of type A considered in section 3: let
me assume, for example, that the particle scatters not from a set
of atoms, but just from one atom belonging to the large system.
The action can simply be written, according to (13):

S =
∫

L(t) dt = −
∫

F · r dt, (26)

where r is the position of the particle at time t and F is the
force by which the atom acts on the particle. But in this case
an equivalent form for the action (with a change of sign; see
equation (22)) can be obtained:

S =
∫

L̃(t) dt =
∫

F · r̃ dt, (27)

where now r̃ is interpreted as the position of the atom at time
t . Noise arises from the fact that both F and r̃ are randomly
affected by the phonons. Thus S = S0 + δS and only
the random part δS matters for the DWF (similarly L̃(t) =
L̃0(t) + δL(t)). S and η are thus integrals over collision time
and, when taking the average of the T -matrix element, we have

〈e i
h̄ S〉 = 〈e i

h̄

∫
L̃(t) dt〉 = e

i
h̄

∫
L̃0(t) dt〈e i

h̄

∫
δL(t) dt〉. (28)

The random contributions in the last integral are (to a first
approximation, in particular neglecting the effect of phonons
on the forces2, and considering only the effect of phonons
on the displacements) linear in the phonon variables, and
the latter have a Gaussian distribution. Therefore, the above
contributions also have a Gaussian distribution and I can
use the elementary theorem for Gaussian variables with zero
average (also valid, although in a less elementary way, for
Gaussian quantum operators):

〈eiα〉 = e− 1
2 〈α2〉. (29)

Thus

|〈e i
h̄ S〉|2 = |e i

h̄

∫
L̃0(t) dt 〈e i

h̄

∫
δL(t) dt〉|2 = |〈e i

h̄

∫
δL(t) dt〉|2

= |e− 1
2h̄2 〈[∫ δL(t) dt]2〉|2 = e− 1

h̄2 〈[∫ δL(t) dt]2〉
.

The DWF is thus

e−2W , W = 1

2h̄2

〈[∫
δL(t) dt

]2〉
. (30)

The most important point here is that the DWF is related to
the correlation between Lagrangians at different times. Indeed
W can be rewritten as

W = 1

2h̄2

〈∫
δL(t) dt

∫
δL(t ′) dt ′

〉
,

i.e. interchanging integration and average:

W = 1

2h̄2

∫ ∫
〈δL(t)δL(t ′)〉 dt dt ′. (31)

2 This is allowed, for example, for slowly varying potentials, but is exact again
for abrupt potentials: complications may arise only in intermediate situations.

The double integral converges in all cases because both δL’s
are to be considered within the collision time τc only; but
if, moreover, the correlation function, related to the phonon
vibrations, vanishes whenever |t ′ − t| � τph, then W
becomes small when τph is short, i.e. for relatively high phonon
frequencies.

For the return to coherence formula (31) is very relevant.
Indeed in the present case decoherence takes place with
increasing mass of the incoming particle simply because for
given accelerations in the scattering potential the forces, and
hence the Lagrangians, increase with the mass, leading rapidly
(W appears in the exponent!) to classical behaviour. This is
true for given accelerations, i.e. for given collision times, but
remains valid whenever the phonon frequencies are so low (or
the particle motion so fast) that the whole collision appears to
be instantaneous with respect to the phonon oscillations. In the
opposite case, however, (31) must be taken seriously.

The most important consequence of (31) is that a
heavy particle may show quantum-mechanically coherent
behaviour because its collision requires a long time to be
completed, while the correlation function (related to the
phonon oscillations) vanishes in a much shorter time. Or, in
a slightly different language, by the adiabatic principle, high-
frequency phonons cannot easily be excited (or de-excited) in a
long, slow collision. This leads to a relatively small value of W ,
and hence to relatively strong quantum-mechanical effects3.
Counting times from the central instant of the collision, let me
assume, for example, that the correlation function occurring
in (31) behaves as

〈δL(t)δL(t ′)〉 ∼ 〈[δL(0)]2〉e−α(|t|+|t ′ |)−β|t ′−t|, (32)

where α = τ−1
c , β = τ−1

ph . Then

W = 〈[δL(0)]2〉τphτ
2
c

h̄2

2τph + τc

(τph + τc)2
, (33)

i.e.

W ∼ pτ 2
c

〈[δL(0)]2〉
h̄2

(34)

if τph � τc and

W ∼ qτphτc
〈[δL(0)]2〉

h̄2 (35)

if τph � τc, with p = 2, q = 1. The exponential expression
used in (32) is largely irrelevant: with any other simple,
reasonable behaviour (34) and (35) would equally obtain (only
the coefficients p and q would possibly be different). Thus
W turns out to be essentially independent of τph if the latter is
large (low phonon frequencies), but reduces proportionally to
τph if the latter becomes short (i.e. if the phonon frequencies
are high with respect to relatively slow collisions).

3 In some cases, as shown by Beeby, for a light particle the opposite
happens (due to acceleration in the potential well) and W increases [9]; this
complication is irrelevant here.
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6. Experimental results

An interesting, recent application of the effects of type A
is grazing incidence fast atom diffraction (GIFAD) [10],
where, due to grazing incidence, several successive atoms
participate in the scattering, each receiving a very small
momentum transfer. Turning now to the effects of type B, the
first experimental results related to the above were obtained
many years ago in our university by Boato et al In atom–
surface scattering. The most prominent quantum effects are
diffractions from the crystal lattice: these had been observed
with hydrogen and helium scattering already around 1930
by Stern’s group in Hamburg [11] and independently by
Johnson [12] (at the time, these experiments were seen as rather
fundamental, proving the quantum behaviour of complex
systems such as atoms). With neon atoms, on the other
hand, nothing similar was expected and elementary estimates
indicated that the exponential DWF was going to kill any
diffraction. In contrast, with some surprise, Boato et al
studying the scattering of Ne from a LiF surface saw a set of
beautiful diffraction peaks (although less sharp than those of
He) [13].

Recently, on the other hand, the Cambridge group has
studied the scattering of Ne from a different system: an
adsorbate of Li forming a c(2 × 2) structure on the (100)
surface of copper. Quantum behaviour appeared again (high
reflectivity and diffraction peaks), but this time much more
strongly than in Boato’s case: neon showed quantum features
as sharp as those of helium [14].

These experiments, showing unexpected coherence
in relatively heavy atom scattering, have easily been
explained [5, 3] on the basis of the concepts discussed above. It
is also understandable why the effect found by the Cambridge
group was stronger than that found by the Genova group: this
depends on the different phonon spectra in the two cases.
The effect occurs because high-frequency phonons cannot be
excited during a slow collision process. Lithium fluoride is
a bulk system possessing a normal spectrum, with a sizeable
contribution of low frequencies. If for such spectrum a Debye
model is assumed, W can be shown to increase with mass,
although less than in the elementary case (as

√
m instead

of as m [5]): thus for Boato neon appeared unavoidably to
be less quantum-mechanical than helium. But the lithium
adsorbate has a spectrum dominated by a single, relatively
high, frequency, that of the perpendicular motion of Li atoms
against the Cu surface: in this case the dominant frequency has
no effect (its contribution to W would be paradoxically less for
neon than for helium!) and the quantum-mechanical behaviour
of the two atoms can be similar [3].

7. Discussion

With the support of these experimental facts, I wish to turn
now to the conceptual significance of the discussion. Although
previous papers [5, 3] have been instrumental in exploring
the effects of slow atoms colliding with solids possessing a
high-frequency spectrum, and have explained theoretically in
detail the experimental facts concerning neon scattering, the

core of the matter remained somewhat hidden: the present
paper is aimed not only at clarifying such a core, but also
at showing that very general principles, lying at the border
between classical and quantum physics, are involved. At first
sight, the DWF might appear as a very special effect, related
to solid state physics; but in fact I think it to be a convincing
example of a large class of decoherence effects. Quantum
coherence is obviously related to the phase of the wavefunction
and, as in equation (1) or in equations (30)–(31), Gaussian
disturbances of any kind (not necessarily phonons!) cause
an averaging of the phase factor which in turn results in an
exponential reduction of the coherent terms. Such disturbances
increase rapidly when passing to more macroscopic situations
(or, in the above discussion, to a heavier scattering particle) and
decoherence takes place exponentially. I am not claiming that
this explains the whole transition from quantum to classical
behaviour when passing from microscopic to macroscopic
objects (I have left aside the subtle effects of entanglement, on
which a rich and far from trivial literature exists, showing that
simplified treatments tend to miss the goal [1, 2]). But much of
this transition is nothing but an averaging of phase factors, as
indeed can be surmised from the simplest examples presented
by Zurek [1].

On the other hand, return to coherence occurs when,
for any reason, the effect of disturbances is reduced. In
the above discussion, a large number of atoms contributing
to the scattering is, perhaps surprisingly, less effective for
decoherence than a single atom, because each receives a small
portion only of the momentum transfer (effect of type A); or the
increase of disturbance with increasing particle mass is weak
because at the same time, as in (31), a correlation remains
non-vanishing only for times much shorter than the duration
of the collision (effect of type B). Thus one might expect
that the hope of seeing quantum properties with relatively large
objects resides ultimately in reducing the disturbances causing
decoherence, which is hardly surprising.

According to Feynman’s philosophy, quantum amplitudes
are obtained by weighting a phase factor eiS/h̄ , where S is
any possible action, over a space of quantum paths [7], while
the classical limit obtains when only the minimal (or rather
extremal) action Scl is taken into account. Even quantum-
mechanically, Scl necessarily yields the largest contribution by
the principle of stationary phase, while the contribution of any
specified action different from it (and thus non-extremal) is
attenuated, its average leading to a generalized DWF similar
to (30)–(31). If the effects of such a DWF happen to be
weak, e.g. for the reasons discussed in the present paper, non-
extremal actions become important and typical quantum wave-
like phenomena reappear.
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